Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fa-Qian Liu, ${ }^{\text {a }}$ Wei-Hua Li, ${ }^{\text {b }}$ Hai-Bin Song, ${ }^{\text {c }}$ Lu-De Lu, ${ }^{\text {a }}{ }^{*}$ Xu-Jie Yang ${ }^{\text {a }}$ and Xin Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, ${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266033, People's Republic of China, and ${ }^{\text {c }}$ State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: fqliu@vip.163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.076$
Data-to-parameter ratio $=8.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(4-Hydroxyphenyl)-3-(1H-1,2,4-triazol-1-yl)-propan-1-one

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$, the dihedral angles made by the planes of the triazole and benzene rings with the plane through the OC_{3} atoms of the ketone group are 72.87 (4) and $7.10(3)^{\circ}$, respectively. There are some intermolecular interactions in the crystal structure, which contribute to the stability.

Comment

Triazole rings appear frequently in the structures of various natural products and biologically active compounds, notably thiamine (vitamin B), penicillins and antibiotics, such as micrococcin (James \& Watson, 1966). Triazole derivatives have also attracted considerable attention in industry and agriculture because of their significant biological activities (Zhang et al., 2002). In this paper, we report the structure of the title compound (I).

(I)

In the title compound (Fig. 1), the bond lengths and angles are generally normal in the benzene and triazole rings (Ji et al., 2002). The $\mathrm{C}=\mathrm{O}$ bond length is close to the typical $\mathrm{C}=\mathrm{O}$ double-bond length (Table 1). Atom C3 lies in the plane of the triazole ring, and atoms O1, C1, C2 and C6 are coplanar (plane $p 1)$. The dihedral angles formed by the triazole and C6-C11 rings with $p 1$ are 72.87 (4) and $7.10(3)^{\circ}$, respectively. The $\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2, \mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$ torsion angles are 68.2 (2), 4.1 (3), 172.0 (2) and $112.7(2)^{\circ}$, respectively. The most interesting structural features of the title compound are $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intermolecular

Figure 1
The structure of the title compound, showing 35% probability displacement ellipsoids and the atom-numbering scheme.

Received 11 January 2005
Accepted 12 January 2005 Online 22 January 2005
hydrogen bonds and weak $(\mathrm{C}-\mathrm{H} \cdots Y$ hydrogen bonds; $Y=\mathrm{O}$ and N) intermolecular interactions (see Table 2). These interactions stabilize the crystal structure.

Experimental

The title compound was prepared according to the method reported by Ogata et al. (1987). Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=217.23$
Monoclinic, $C c$
$a=22.759(4) \AA$
$b=5.5729(9) \AA$
$c=8.3902(14) \AA$
$\beta=90.929(2)^{\circ}$
$V=1064.0(3) \AA^{3}$
$Z=4$

$$
D_{x}=1.356 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1098 reflections
$\theta=3.6-26.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.28 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.958, T_{\text {max }}=0.981$
3413 measured reflections
1271 independent reflections 1006 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-29 \rightarrow 21$
$k=-7 \rightarrow 7$
$l=-9 \rightarrow 11$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0423 P)^{2}\right.} \\
&+0.0744 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.076$
$S=1.03$
1271 reflections
149 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 3$	$1.459(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.476(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.218(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.513(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.347(2)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$4.1(3)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$-68.2(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$112.7(2)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-172.0(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3{ }^{\mathrm{i}}$	0.857 (10)	1.834 (11)	2.685 (2)	172 (3)
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {ii }}$	0.97	2.55	3.162 (3)	120
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 2^{\text {iii }}$	0.97	2.59	3.534 (3)	163
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {iv }}$	0.93	2.43	3.327 (3)	162
C5-H5 $\cdots \mathrm{N} 2^{\text {v }}$	0.93	2.51	3.389 (5)	157

Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $x,-y+1, z+\frac{1}{2} ;$ (iii) $x,-y, z+\frac{1}{2}$; (iv) $x+\frac{1}{2}, y-\frac{1}{2}, z ;$ (v) $x, y+1, z$.

H atoms on O atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (grant No. 40376023).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
James, M. N. G. \& Watson, K. J. (1966). J. Chem. Soc. C, pp. 1361-1371.
Ji, B. M., Du, C. X., Zhu, Y. \& Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252255.

Ogata, M., Matsumoto, H., Kida, S., Shimizu, S., Tawara, K. \& Kawamurai, Y. (1987). J. Med. Chem. 30, 1497-1502.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, Y., Sun, X. W., Hui, X. P., Zhang, Z. X., Wang, Q. \& Zhang, Q. (2002). Chin. J. Chem. 20, 168-173.

